cbor from file
This commit is contained in:
parent
3faa534fb2
commit
6c5cb21fe8
@ -5,9 +5,11 @@ authors = ["ntr <ntr@smokestack.io>"]
|
||||
|
||||
[dependencies]
|
||||
rand = "0.5.4"
|
||||
uuid = { version = "0.6", features = ["serde", "v4"] }
|
||||
serde_json = "1.0.24"
|
||||
uuid = { version = "0.5", features = ["serde", "v4"] }
|
||||
tokio = "0.1"
|
||||
tokio-io = "0.1"
|
||||
futures = "0.1"
|
||||
bytes = "0.4"
|
||||
serde = "1"
|
||||
serde_derive = "1"
|
||||
serde_cbor = "0.9"
|
||||
|
||||
1
cryp.cbor
Normal file
1
cryp.cbor
Normal file
@ -0,0 +1 @@
|
||||
©bidx$8f1755ac-8bf1-47b9-b181-c998aa16a04bcdmg¢evaluedkindcDmgcdef¢evaluedkindcDefdstam¢evaluedkinddStambhp¢evaluedkindbHpbxpclvlfskills<6C>fStoneydnameihatchling
|
||||
474
src/chat.rs
Normal file
474
src/chat.rs
Normal file
@ -0,0 +1,474 @@
|
||||
//! A chat server that broadcasts a message to all connections.
|
||||
//!
|
||||
//! This example is explicitly more verbose than it has to be. This is to
|
||||
//! illustrate more concepts.
|
||||
//!
|
||||
//! A chat server for telnet clients. After a telnet client connects, the first
|
||||
//! line should contain the client's name. After that, all lines sent by a
|
||||
//! client are broadcasted to all other connected clients.
|
||||
//!
|
||||
//! Because the client is telnet, lines are delimited by "\r\n".
|
||||
//!
|
||||
//! You can test this out by running:
|
||||
//!
|
||||
//! cargo run --example chat
|
||||
//!
|
||||
//! And then in another terminal run:
|
||||
//!
|
||||
//! telnet localhost 6142
|
||||
//!
|
||||
//! You can run the `telnet` command in any number of additional windows.
|
||||
//!
|
||||
//! You can run the second command in multiple windows and then chat between the
|
||||
//! two, seeing the messages from the other client as they're received. For all
|
||||
//! connected clients they'll all join the same room and see everyone else's
|
||||
//! messages.
|
||||
|
||||
#![deny(warnings)]
|
||||
|
||||
extern crate tokio;
|
||||
#[macro_use]
|
||||
extern crate futures;
|
||||
extern crate bytes;
|
||||
|
||||
use tokio::io;
|
||||
use tokio::net::{TcpListener, TcpStream};
|
||||
use tokio::prelude::*;
|
||||
use futures::sync::mpsc;
|
||||
use futures::future::{self, Either};
|
||||
use bytes::{BytesMut, Bytes, BufMut};
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::net::SocketAddr;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
/// Shorthand for the transmit half of the message channel.
|
||||
type Tx = mpsc::UnboundedSender<Bytes>;
|
||||
|
||||
/// Shorthand for the receive half of the message channel.
|
||||
type Rx = mpsc::UnboundedReceiver<Bytes>;
|
||||
|
||||
/// Data that is shared between all peers in the chat server.
|
||||
///
|
||||
/// This is the set of `Tx` handles for all connected clients. Whenever a
|
||||
/// message is received from a client, it is broadcasted to all peers by
|
||||
/// iterating over the `peers` entries and sending a copy of the message on each
|
||||
/// `Tx`.
|
||||
struct Shared {
|
||||
peers: HashMap<SocketAddr, Tx>,
|
||||
}
|
||||
|
||||
/// The state for each connected client.
|
||||
struct Peer {
|
||||
/// Name of the peer.
|
||||
///
|
||||
/// When a client connects, the first line sent is treated as the client's
|
||||
/// name (like alice or bob). The name is used to preface all messages that
|
||||
/// arrive from the client so that we can simulate a real chat server:
|
||||
///
|
||||
/// ```text
|
||||
/// alice: Hello everyone.
|
||||
/// bob: Welcome to telnet chat!
|
||||
/// ```
|
||||
name: BytesMut,
|
||||
|
||||
/// The TCP socket wrapped with the `Lines` codec, defined below.
|
||||
///
|
||||
/// This handles sending and receiving data on the socket. When using
|
||||
/// `Lines`, we can work at the line level instead of having to manage the
|
||||
/// raw byte operations.
|
||||
lines: Lines,
|
||||
|
||||
/// Handle to the shared chat state.
|
||||
///
|
||||
/// This is used to broadcast messages read off the socket to all connected
|
||||
/// peers.
|
||||
state: Arc<Mutex<Shared>>,
|
||||
|
||||
/// Receive half of the message channel.
|
||||
///
|
||||
/// This is used to receive messages from peers. When a message is received
|
||||
/// off of this `Rx`, it will be written to the socket.
|
||||
rx: Rx,
|
||||
|
||||
/// Client socket address.
|
||||
///
|
||||
/// The socket address is used as the key in the `peers` HashMap. The
|
||||
/// address is saved so that the `Peer` drop implementation can clean up its
|
||||
/// entry.
|
||||
addr: SocketAddr,
|
||||
}
|
||||
|
||||
/// Line based codec
|
||||
///
|
||||
/// This decorates a socket and presents a line based read / write interface.
|
||||
///
|
||||
/// As a user of `Lines`, we can focus on working at the line level. So, we send
|
||||
/// and receive values that represent entire lines. The `Lines` codec will
|
||||
/// handle the encoding and decoding as well as reading from and writing to the
|
||||
/// socket.
|
||||
#[derive(Debug)]
|
||||
struct Lines {
|
||||
/// The TCP socket.
|
||||
socket: TcpStream,
|
||||
|
||||
/// Buffer used when reading from the socket. Data is not returned from this
|
||||
/// buffer until an entire line has been read.
|
||||
rd: BytesMut,
|
||||
|
||||
/// Buffer used to stage data before writing it to the socket.
|
||||
wr: BytesMut,
|
||||
}
|
||||
|
||||
impl Shared {
|
||||
/// Create a new, empty, instance of `Shared`.
|
||||
fn new() -> Self {
|
||||
Shared {
|
||||
peers: HashMap::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Peer {
|
||||
/// Create a new instance of `Peer`.
|
||||
fn new(name: BytesMut,
|
||||
state: Arc<Mutex<Shared>>,
|
||||
lines: Lines) -> Peer
|
||||
{
|
||||
// Get the client socket address
|
||||
let addr = lines.socket.peer_addr().unwrap();
|
||||
|
||||
// Create a channel for this peer
|
||||
let (tx, rx) = mpsc::unbounded();
|
||||
|
||||
// Add an entry for this `Peer` in the shared state map.
|
||||
state.lock().unwrap()
|
||||
.peers.insert(addr, tx);
|
||||
|
||||
Peer {
|
||||
name,
|
||||
lines,
|
||||
state,
|
||||
rx,
|
||||
addr,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This is where a connected client is managed.
|
||||
///
|
||||
/// A `Peer` is also a future representing completely processing the client.
|
||||
///
|
||||
/// When a `Peer` is created, the first line (representing the client's name)
|
||||
/// has already been read. When the socket closes, the `Peer` future completes.
|
||||
///
|
||||
/// While processing, the peer future implementation will:
|
||||
///
|
||||
/// 1) Receive messages on its message channel and write them to the socket.
|
||||
/// 2) Receive messages from the socket and broadcast them to all peers.
|
||||
///
|
||||
impl Future for Peer {
|
||||
type Item = ();
|
||||
type Error = io::Error;
|
||||
|
||||
fn poll(&mut self) -> Poll<(), io::Error> {
|
||||
// Tokio (and futures) use cooperative scheduling without any
|
||||
// preemption. If a task never yields execution back to the executor,
|
||||
// then other tasks may be starved.
|
||||
//
|
||||
// To deal with this, robust applications should not have any unbounded
|
||||
// loops. In this example, we will read at most `LINES_PER_TICK` lines
|
||||
// from the client on each tick.
|
||||
//
|
||||
// If the limit is hit, the current task is notified, informing the
|
||||
// executor to schedule the task again asap.
|
||||
const LINES_PER_TICK: usize = 10;
|
||||
|
||||
// Receive all messages from peers.
|
||||
for i in 0..LINES_PER_TICK {
|
||||
// Polling an `UnboundedReceiver` cannot fail, so `unwrap` here is
|
||||
// safe.
|
||||
match self.rx.poll().unwrap() {
|
||||
Async::Ready(Some(v)) => {
|
||||
// Buffer the line. Once all lines are buffered, they will
|
||||
// be flushed to the socket (right below).
|
||||
self.lines.buffer(&v);
|
||||
|
||||
// If this is the last iteration, the loop will break even
|
||||
// though there could still be lines to read. Because we did
|
||||
// not reach `Async::NotReady`, we have to notify ourselves
|
||||
// in order to tell the executor to schedule the task again.
|
||||
if i+1 == LINES_PER_TICK {
|
||||
task::current().notify();
|
||||
}
|
||||
}
|
||||
_ => break,
|
||||
}
|
||||
}
|
||||
|
||||
// Flush the write buffer to the socket
|
||||
let _ = self.lines.poll_flush()?;
|
||||
|
||||
// Read new lines from the socket
|
||||
while let Async::Ready(line) = self.lines.poll()? {
|
||||
println!("Received line ({:?}) : {:?}", self.name, line);
|
||||
|
||||
if let Some(message) = line {
|
||||
// Append the peer's name to the front of the line:
|
||||
let mut line = self.name.clone();
|
||||
line.extend_from_slice(b": ");
|
||||
line.extend_from_slice(&message);
|
||||
line.extend_from_slice(b"\r\n");
|
||||
|
||||
// We're using `Bytes`, which allows zero-copy clones (by
|
||||
// storing the data in an Arc internally).
|
||||
//
|
||||
// However, before cloning, we must freeze the data. This
|
||||
// converts it from mutable -> immutable, allowing zero copy
|
||||
// cloning.
|
||||
let line = line.freeze();
|
||||
|
||||
// Now, send the line to all other peers
|
||||
for (addr, tx) in &self.state.lock().unwrap().peers {
|
||||
// Don't send the message to ourselves
|
||||
if *addr != self.addr {
|
||||
// The send only fails if the rx half has been dropped,
|
||||
// however this is impossible as the `tx` half will be
|
||||
// removed from the map before the `rx` is dropped.
|
||||
tx.unbounded_send(line.clone()).unwrap();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// EOF was reached. The remote client has disconnected. There is
|
||||
// nothing more to do.
|
||||
return Ok(Async::Ready(()));
|
||||
}
|
||||
}
|
||||
|
||||
// As always, it is important to not just return `NotReady` without
|
||||
// ensuring an inner future also returned `NotReady`.
|
||||
//
|
||||
// We know we got a `NotReady` from either `self.rx` or `self.lines`, so
|
||||
// the contract is respected.
|
||||
Ok(Async::NotReady)
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for Peer {
|
||||
fn drop(&mut self) {
|
||||
self.state.lock().unwrap().peers
|
||||
.remove(&self.addr);
|
||||
}
|
||||
}
|
||||
|
||||
impl Lines {
|
||||
/// Create a new `Lines` codec backed by the socket
|
||||
fn new(socket: TcpStream) -> Self {
|
||||
Lines {
|
||||
socket,
|
||||
rd: BytesMut::new(),
|
||||
wr: BytesMut::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Buffer a line.
|
||||
///
|
||||
/// This writes the line to an internal buffer. Calls to `poll_flush` will
|
||||
/// attempt to flush this buffer to the socket.
|
||||
fn buffer(&mut self, line: &[u8]) {
|
||||
// Ensure the buffer has capacity. Ideally this would not be unbounded,
|
||||
// but to keep the example simple, we will not limit this.
|
||||
self.wr.reserve(line.len());
|
||||
|
||||
// Push the line onto the end of the write buffer.
|
||||
//
|
||||
// The `put` function is from the `BufMut` trait.
|
||||
self.wr.put(line);
|
||||
}
|
||||
|
||||
/// Flush the write buffer to the socket
|
||||
fn poll_flush(&mut self) -> Poll<(), io::Error> {
|
||||
// As long as there is buffered data to write, try to write it.
|
||||
while !self.wr.is_empty() {
|
||||
// Try to write some bytes to the socket
|
||||
let n = try_ready!(self.socket.poll_write(&self.wr));
|
||||
|
||||
// As long as the wr is not empty, a successful write should
|
||||
// never write 0 bytes.
|
||||
assert!(n > 0);
|
||||
|
||||
// This discards the first `n` bytes of the buffer.
|
||||
let _ = self.wr.split_to(n);
|
||||
}
|
||||
|
||||
Ok(Async::Ready(()))
|
||||
}
|
||||
|
||||
/// Read data from the socket.
|
||||
///
|
||||
/// This only returns `Ready` when the socket has closed.
|
||||
fn fill_read_buf(&mut self) -> Poll<(), io::Error> {
|
||||
loop {
|
||||
// Ensure the read buffer has capacity.
|
||||
//
|
||||
// This might result in an internal allocation.
|
||||
self.rd.reserve(1024);
|
||||
|
||||
// Read data into the buffer.
|
||||
let n = try_ready!(self.socket.read_buf(&mut self.rd));
|
||||
|
||||
if n == 0 {
|
||||
return Ok(Async::Ready(()));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Stream for Lines {
|
||||
type Item = BytesMut;
|
||||
type Error = io::Error;
|
||||
|
||||
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
|
||||
// First, read any new data that might have been received off the socket
|
||||
let sock_closed = self.fill_read_buf()?.is_ready();
|
||||
|
||||
// Now, try finding lines
|
||||
let pos = self.rd.windows(2).enumerate()
|
||||
.find(|&(_, bytes)| bytes == b"\r\n")
|
||||
.map(|(i, _)| i);
|
||||
|
||||
if let Some(pos) = pos {
|
||||
// Remove the line from the read buffer and set it to `line`.
|
||||
let mut line = self.rd.split_to(pos + 2);
|
||||
|
||||
// Drop the trailing \r\n
|
||||
line.split_off(pos);
|
||||
|
||||
// Return the line
|
||||
return Ok(Async::Ready(Some(line)));
|
||||
}
|
||||
|
||||
if sock_closed {
|
||||
Ok(Async::Ready(None))
|
||||
} else {
|
||||
Ok(Async::NotReady)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Spawn a task to manage the socket.
|
||||
///
|
||||
/// This will read the first line from the socket to identify the client, then
|
||||
/// add the client to the set of connected peers in the chat service.
|
||||
fn process(socket: TcpStream, state: Arc<Mutex<Shared>>) {
|
||||
// Wrap the socket with the `Lines` codec that we wrote above.
|
||||
//
|
||||
// By doing this, we can operate at the line level instead of doing raw byte
|
||||
// manipulation.
|
||||
let lines = Lines::new(socket);
|
||||
|
||||
// The first line is treated as the client's name. The client is not added
|
||||
// to the set of connected peers until this line is received.
|
||||
//
|
||||
// We use the `into_future` combinator to extract the first item from the
|
||||
// lines stream. `into_future` takes a `Stream` and converts it to a future
|
||||
// of `(first, rest)` where `rest` is the original stream instance.
|
||||
let connection = lines.into_future()
|
||||
// `into_future` doesn't have the right error type, so map the error to
|
||||
// make it work.
|
||||
.map_err(|(e, _)| e)
|
||||
// Process the first received line as the client's name.
|
||||
.and_then(|(name, lines)| {
|
||||
// If `name` is `None`, then the client disconnected without
|
||||
// actually sending a line of data.
|
||||
//
|
||||
// Since the connection is closed, there is no further work that we
|
||||
// need to do. So, we just terminate processing by returning
|
||||
// `future::ok()`.
|
||||
//
|
||||
// The problem is that only a single future type can be returned
|
||||
// from a combinator closure, but we want to return both
|
||||
// `future::ok()` and `Peer` (below).
|
||||
//
|
||||
// This is a common problem, so the `futures` crate solves this by
|
||||
// providing the `Either` helper enum that allows creating a single
|
||||
// return type that covers two concrete future types.
|
||||
let name = match name {
|
||||
Some(name) => name,
|
||||
None => {
|
||||
// The remote client closed the connection without sending
|
||||
// any data.
|
||||
return Either::A(future::ok(()));
|
||||
}
|
||||
};
|
||||
|
||||
println!("`{:?}` is joining the chat", name);
|
||||
|
||||
// Create the peer.
|
||||
//
|
||||
// This is also a future that processes the connection, only
|
||||
// completing when the socket closes.
|
||||
let peer = Peer::new(
|
||||
name,
|
||||
state,
|
||||
lines);
|
||||
|
||||
// Wrap `peer` with `Either::B` to make the return type fit.
|
||||
Either::B(peer)
|
||||
})
|
||||
// Task futures have an error of type `()`, this ensures we handle the
|
||||
// error. We do this by printing the error to STDOUT.
|
||||
.map_err(|e| {
|
||||
println!("connection error = {:?}", e);
|
||||
});
|
||||
|
||||
// Spawn the task. Internally, this submits the task to a thread pool.
|
||||
tokio::spawn(connection);
|
||||
}
|
||||
|
||||
pub fn main() {
|
||||
// Create the shared state. This is how all the peers communicate.
|
||||
//
|
||||
// The server task will hold a handle to this. For every new client, the
|
||||
// `state` handle is cloned and passed into the task that processes the
|
||||
// client connection.
|
||||
let state = Arc::new(Mutex::new(Shared::new()));
|
||||
|
||||
let addr = "127.0.0.1:6142".parse().unwrap();
|
||||
|
||||
// Bind a TCP listener to the socket address.
|
||||
//
|
||||
// Note that this is the Tokio TcpListener, which is fully async.
|
||||
let listener = TcpListener::bind(&addr).unwrap();
|
||||
|
||||
// The server task asynchronously iterates over and processes each
|
||||
// incoming connection.
|
||||
let server = listener.incoming().for_each(move |socket| {
|
||||
// Spawn a task to process the connection
|
||||
process(socket, state.clone());
|
||||
Ok(())
|
||||
})
|
||||
.map_err(|err| {
|
||||
// All tasks must have an `Error` type of `()`. This forces error
|
||||
// handling and helps avoid silencing failures.
|
||||
//
|
||||
// In our example, we are only going to log the error to STDOUT.
|
||||
println!("accept error = {:?}", err);
|
||||
});
|
||||
|
||||
println!("server running on localhost:6142");
|
||||
|
||||
// Start the Tokio runtime.
|
||||
//
|
||||
// The Tokio is a pre-configured "out of the box" runtime for building
|
||||
// asynchronous applications. It includes both a reactor and a task
|
||||
// scheduler. This means applications are multithreaded by default.
|
||||
//
|
||||
// This function blocks until the runtime reaches an idle state. Idle is
|
||||
// defined as all spawned tasks have completed and all I/O resources (TCP
|
||||
// sockets in our case) have been dropped.
|
||||
//
|
||||
// In our example, we have not defined a shutdown strategy, so this will
|
||||
// block until `ctrl-c` is pressed at the terminal.
|
||||
tokio::run(server);
|
||||
}
|
||||
@ -1,6 +1,7 @@
|
||||
use rand::prelude::*;
|
||||
use cryp::Cryp;
|
||||
use battle::Battle;
|
||||
use skill::Skill;
|
||||
|
||||
struct Encounter {
|
||||
mob: Cryp,
|
||||
@ -65,6 +66,29 @@ pub fn levelling(mut c: Cryp) -> Cryp {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn test_battle() {
|
||||
let mut a = Cryp::new()
|
||||
.named("pronounced \"creeep\"".to_string())
|
||||
.level(8)
|
||||
.learn(Skill::Stoney)
|
||||
.create();
|
||||
|
||||
let b = Cryp::new()
|
||||
.named("lemongrass tea".to_string())
|
||||
.level(8)
|
||||
.create();
|
||||
|
||||
let outcome = battle(&a, &b);
|
||||
|
||||
match outcome.winner() {
|
||||
Some(w) => println!("{:?} is the winner with {:?} hp remaining", w.name, w.hp),
|
||||
None => println!("{:?} was a draw", outcome),
|
||||
};
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use *;
|
||||
|
||||
29
src/cryp.rs
29
src/cryp.rs
@ -1,9 +1,11 @@
|
||||
use uuid::Uuid;
|
||||
use rand::prelude::*;
|
||||
use skill::{Skill};
|
||||
use serde_cbor::*;
|
||||
use std::fs::File;
|
||||
use std::io::prelude::*;
|
||||
|
||||
use skill::Skill;
|
||||
|
||||
#[derive(Debug,Clone,Copy,PartialEq)]
|
||||
#[derive(Debug,Clone,Copy,PartialEq,Serialize,Deserialize)]
|
||||
pub enum StatKind {
|
||||
Dmg,
|
||||
Def,
|
||||
@ -18,7 +20,7 @@ pub struct Roll {
|
||||
pub kind: StatKind,
|
||||
}
|
||||
|
||||
#[derive(Debug,Clone)]
|
||||
#[derive(Debug,Clone,Serialize,Deserialize)]
|
||||
pub struct Stat {
|
||||
pub value: u64,
|
||||
pub kind: StatKind,
|
||||
@ -64,7 +66,7 @@ pub struct Turn {
|
||||
pub def: Roll,
|
||||
}
|
||||
|
||||
#[derive(Debug,Clone)]
|
||||
#[derive(Debug,Clone,Serialize,Deserialize)]
|
||||
pub struct Cryp {
|
||||
pub id: Uuid,
|
||||
// todo
|
||||
@ -178,21 +180,22 @@ impl Cryp {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use cryp::{StatKind,Skill};
|
||||
use *;
|
||||
use cryp::*;
|
||||
use skill::*;
|
||||
|
||||
#[test]
|
||||
fn create_cryp_test() {
|
||||
let mut level_two = Cryp::new()
|
||||
let level_two = Cryp::new()
|
||||
.named("hatchling".to_string())
|
||||
.level(2)
|
||||
.learn(Skill::Stoney)
|
||||
.create();
|
||||
|
||||
// assert!(level_two.dmg <= 2_u64.pow(2));
|
||||
// assert!(level_two.def <= 2_u64.pow(2));
|
||||
assert_eq!(level_two.skills.len(), 1);
|
||||
println!("{:?}", level_two);
|
||||
let f = File::open("cryp.cbor").unwrap();
|
||||
let opened: Cryp = from_reader(f).unwrap();
|
||||
|
||||
println!("{:?}", opened);
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
46
src/lib.rs
46
src/lib.rs
@ -1,46 +0,0 @@
|
||||
extern crate rand;
|
||||
extern crate uuid;
|
||||
|
||||
mod cryp;
|
||||
mod combat;
|
||||
mod battle;
|
||||
mod skill;
|
||||
|
||||
use combat::{battle, levelling};
|
||||
use battle::{Battle};
|
||||
use cryp::{Cryp, StatKind};
|
||||
use skill::{Skill};
|
||||
|
||||
pub fn main() {
|
||||
let mut a = Cryp::new()
|
||||
.named("pronounced \"creeep\"".to_string())
|
||||
.level(8)
|
||||
.learn(Skill::Stoney)
|
||||
.create();
|
||||
|
||||
let b = Cryp::new()
|
||||
.named("lemongrass tea".to_string())
|
||||
.level(8)
|
||||
.create();
|
||||
|
||||
let outcome = battle(&a, &b);
|
||||
|
||||
match outcome.winner() {
|
||||
Some(w) => println!("{:?} is the winner with {:?} hp remaining", w.name, w.hp),
|
||||
None => println!("{:?} was a draw", outcome),
|
||||
};
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use *;
|
||||
|
||||
#[test]
|
||||
fn battle_test() {
|
||||
main();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
65
src/main.rs
65
src/main.rs
@ -1,33 +1,44 @@
|
||||
extern crate serde;
|
||||
extern crate serde_cbor;
|
||||
#[macro_use]
|
||||
extern crate serde_derive;
|
||||
|
||||
extern crate tokio;
|
||||
extern crate bytes;
|
||||
extern crate rand;
|
||||
extern crate uuid;
|
||||
#[macro_use]
|
||||
extern crate futures;
|
||||
|
||||
use tokio::io;
|
||||
use tokio::net::TcpListener;
|
||||
use tokio::prelude::*;
|
||||
|
||||
use std::net::SocketAddr;
|
||||
mod cryp;
|
||||
mod combat;
|
||||
mod battle;
|
||||
mod skill;
|
||||
mod net;
|
||||
|
||||
fn main() {
|
||||
let addr = "0.0.0.0:40000".to_string();
|
||||
let addr = addr.parse::<SocketAddr>().unwrap();
|
||||
|
||||
let listener = TcpListener::bind(&addr).unwrap();
|
||||
println!("Listening on: {}", addr);
|
||||
|
||||
let done = listener.incoming()
|
||||
.map_err(|e| println!("failed to accept socket; error = {:?}", e))
|
||||
.for_each(|socket| {
|
||||
let (reader, writer) = socket.split();
|
||||
let amt = io::copy(reader, writer);
|
||||
|
||||
let msg = amt.then(move |result| {
|
||||
match result {
|
||||
Ok((amt, _, _)) => println!("wrote {} bytes", amt),
|
||||
Err(e) => println!("error: {}", e),
|
||||
}
|
||||
|
||||
Ok(())
|
||||
});
|
||||
tokio::spawn(msg)
|
||||
});
|
||||
tokio::run(done);
|
||||
}
|
||||
|
||||
// use tokio::net::TcpListener;
|
||||
// use tokio::prelude::*;
|
||||
|
||||
// use std::net::SocketAddr;
|
||||
|
||||
// use net::{process};
|
||||
|
||||
// fn main() {
|
||||
// let addr = "0.0.0.0:40000".to_string();
|
||||
// let addr = addr.parse::<SocketAddr>().unwrap();
|
||||
|
||||
// let listener = TcpListener::bind(&addr).unwrap();
|
||||
// println!("Listening on: {}", addr);
|
||||
|
||||
// let done = listener.incoming()
|
||||
// .map_err(|e| println!("failed to accept socket; error = {:?}", e))
|
||||
// .for_each(|socket| {
|
||||
// process(socket)
|
||||
// });
|
||||
|
||||
// tokio::run(done);
|
||||
// }
|
||||
|
||||
189
src/net.rs
Normal file
189
src/net.rs
Normal file
@ -0,0 +1,189 @@
|
||||
use bytes::{BytesMut, Bytes, BufMut};
|
||||
use futures::future::{self, Either};
|
||||
use futures::sync::mpsc;
|
||||
use tokio::io;
|
||||
use tokio::net::TcpStream;
|
||||
use tokio::prelude::*;
|
||||
|
||||
use cryp::{Cryp};
|
||||
use skill::{Skill};
|
||||
|
||||
// struct Line {
|
||||
// socket: TcpStream,
|
||||
// rd: BytesMut,
|
||||
// wr: BytesMut,
|
||||
// }
|
||||
|
||||
// impl Line {
|
||||
// /// Create a new `lines` codec backed by the socket
|
||||
// fn new(socket: TcpStream) -> Line {
|
||||
// Line {
|
||||
// socket,
|
||||
// rd: BytesMut::new(),
|
||||
// wr: BytesMut::new(),
|
||||
// }
|
||||
// }
|
||||
|
||||
// /// Buffer a Line.
|
||||
// ///
|
||||
// /// This writes the Line to an internal buffer. Calls to `poll_flush` will
|
||||
// /// attempt to flush this buffer to the socket.
|
||||
// fn buffer(&mut self, line: &[u8]) {
|
||||
// // Ensure the buffer has capacity. Ideally this would not be unbounded,
|
||||
// // but to keep the example simple, we will not limit this.
|
||||
// self.wr.reserve(line.len());
|
||||
|
||||
// // Push the line onto the end of the write buffer.
|
||||
// //
|
||||
// // The `put` function is from the `BufMut` trait.
|
||||
// self.wr.put(line);
|
||||
// }
|
||||
|
||||
// /// Flush the write buffer to the socket
|
||||
// fn poll_flush(&mut self) -> Poll<(), io::Error> {
|
||||
// // As long as there is buffered data to write, try to write it.
|
||||
// while !self.wr.is_empty() {
|
||||
// // Try to write some bytes to the socket
|
||||
// let n = try_ready!(self.socket.poll_write(&self.wr));
|
||||
|
||||
// // As long as the wr is not empty, a successful write should
|
||||
// // never write 0 bytes.
|
||||
// assert!(n > 0);
|
||||
|
||||
// // This discards the first `n` bytes of the buffer.
|
||||
// let _ = self.wr.split_to(n);
|
||||
// }
|
||||
|
||||
// // Buffer is empty, everything written
|
||||
// Ok(Async::Ready(()))
|
||||
// }
|
||||
|
||||
// /// Read data from the socket.
|
||||
// ///
|
||||
// /// This only returns `Ready` when the socket has closed.
|
||||
// fn fill_read_buf(&mut self) -> Poll<(), io::Error> {
|
||||
// loop {
|
||||
// // Ensure the read buffer has capacity.
|
||||
// // This might result in an internal allocation.
|
||||
// self.rd.reserve(1024);
|
||||
|
||||
// // Read data into the buffer.
|
||||
// let n = try_ready!(self.socket.read_buf(&mut self.rd));
|
||||
|
||||
// if n == 0 {
|
||||
// return Ok(Async::Ready(()));
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
// impl Stream for Line {
|
||||
// type Item = BytesMut;
|
||||
// type Error = io::Error;
|
||||
|
||||
// fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
|
||||
// // First, read any new data that might have been received off the socket
|
||||
// let sock_closed = self.fill_read_buf()?.is_ready();
|
||||
|
||||
// // Now, try finding line endings
|
||||
// let pos = self.rd.windows(2).enumerate()
|
||||
// .find(|&(_, bytes)| bytes == b"\r\n")
|
||||
// .map(|(i, _)| i);
|
||||
|
||||
// if let Some(pos) = pos {
|
||||
// // Remove the line from the read buffer and set it to `line`.
|
||||
// let mut line = self.rd.split_to(pos + 2);
|
||||
|
||||
// // Drop the trailing \r\n
|
||||
// line.split_off(pos);
|
||||
|
||||
// // Return the line
|
||||
// return Ok(Async::Ready(Some(line)));
|
||||
// }
|
||||
|
||||
|
||||
// if sock_closed {
|
||||
// Ok(Async::Ready(None))
|
||||
// } else {
|
||||
// Ok(Async::NotReady)
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
// fn generate() -> Cryp {
|
||||
// let a = Cryp::new()
|
||||
// .named("pronounced \"creeep\"".to_string())
|
||||
// .level(8)
|
||||
// .learn(Skill::Stoney)
|
||||
// .create();
|
||||
|
||||
// a
|
||||
// }
|
||||
|
||||
// pub fn process(socket: TcpStream) {
|
||||
// // Wrap the socket with the `lines` codec that we wrote above.
|
||||
// //
|
||||
// // By doing this, we can operate at the Line level instead of doing raw byte
|
||||
// // manipulation.
|
||||
// let lines = lines::new(socket);
|
||||
|
||||
// // The first Line is treated as the client's name. The client is not added
|
||||
// // to the set of connected peers until this Line is received.
|
||||
// //
|
||||
// // We use the `into_future` combinator to extract the first item from the
|
||||
// // lines stream. `into_future` takes a `Stream` and converts it to a future
|
||||
// // of `(first, rest)` where `rest` is the original stream instance.
|
||||
// let connection = lines.into_future()
|
||||
// // `into_future` doesn't have the right error type, so map the error to
|
||||
// // make it work.
|
||||
// .map_err(|(e, _)| e)
|
||||
// // Process the first received Line as the client's name.
|
||||
// .and_then(|(name, lines)| {
|
||||
// // If `name` is `None`, then the client disconnected without
|
||||
// // actually sending a Line of data.
|
||||
// //
|
||||
// // Since the connection is closed, there is no further work that we
|
||||
// // need to do. So, we just terminate processing by returning
|
||||
// // `future::ok()`.
|
||||
// //
|
||||
// // The problem is that only a single future type can be returned
|
||||
// // from a combinator closure, but we want to return both
|
||||
// // `future::ok()` and `Peer` (below).
|
||||
// //
|
||||
// // This is a common problem, so the `futures` crate solves this by
|
||||
// // providing the `Either` helper enum that allows creating a single
|
||||
// // return type that covers two concrete future types.
|
||||
// let name = match name {
|
||||
// Some(name) => name,
|
||||
// None => {
|
||||
// // The remote client closed the connection without sending
|
||||
// // any data.
|
||||
// return Either::A(future::ok(()));
|
||||
// }
|
||||
// };
|
||||
|
||||
// println!("`{:?}` is joining the chat", name);
|
||||
|
||||
// // Create the peer.
|
||||
// //
|
||||
// // This is also a future that processes the connection, only
|
||||
// // completing when the socket closes.
|
||||
// let peer = Peer::new(
|
||||
// name,
|
||||
// state,
|
||||
// lines);
|
||||
|
||||
// // Wrap `peer` with `Either::B` to make the return type fit.
|
||||
// Either::B(peer)
|
||||
// })
|
||||
// // Task futures have an error of type `()`, this ensures we handle the
|
||||
// // error. We do this by printing the error to STDOUT.
|
||||
// .map_err(|e| {
|
||||
// println!("connection error = {:?}", e);
|
||||
// });
|
||||
|
||||
// // Spawn the task. Internally, this submits the task to a thread pool.
|
||||
// tokio::spawn(connection);
|
||||
// }
|
||||
@ -1,6 +1,6 @@
|
||||
use cryp::{StatKind, Roll};
|
||||
|
||||
#[derive(Debug,Clone,Copy,PartialEq)]
|
||||
#[derive(Debug,Clone,Copy,PartialEq,Serialize,Deserialize)]
|
||||
pub enum Skill {
|
||||
Stoney,
|
||||
Evasive,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user