bleh
This commit is contained in:
parent
0012b1b585
commit
9212cff67a
10
Cargo.toml
10
Cargo.toml
@ -4,14 +4,10 @@ version = "0.1.0"
|
||||
authors = ["ntr <ntr@smokestack.io>"]
|
||||
|
||||
[dependencies]
|
||||
rand = "0.5.4"
|
||||
rand = "0.5"
|
||||
uuid = { version = "0.5", features = ["serde", "v4"] }
|
||||
tokio = "0.1"
|
||||
tokio-core = "0.1"
|
||||
futures = "0.1"
|
||||
bytes = "0.4"
|
||||
serde = "1"
|
||||
serde_derive = "1"
|
||||
serde_cbor = "0.9"
|
||||
tarpc = "0.12.0"
|
||||
tarpc-plugins = "0.4.0"
|
||||
ws = "*"
|
||||
env_logger = "*"
|
||||
|
||||
11
DIARY.md
Executable file
11
DIARY.md
Executable file
@ -0,0 +1,11 @@
|
||||
## 02-09-2018
|
||||
* went full circle through the last 20 years of the web's problems
|
||||
* debated using vanilla tcp sockets but realised would be very time consuming
|
||||
* Struggled a lot with google/tarpc
|
||||
found the documentation absolutely mad, macros perform most of the functionality
|
||||
couldn't find any way to keep server running, client stub appears to direcly rely on the server structs
|
||||
needed a specific version of the rust nightly from several months ago to compile
|
||||
* found wa-rs, hope was restored, had a websocket server up and running in seconds
|
||||
* lost hope again when its client doesn't compile into wasm due to unix dependencies in mio
|
||||
this also prevents any tokio based futures client from working
|
||||
* realised i'd been reading very out of date documentation and there was plenty of work happening on `stdweb` and `cargo web`
|
||||
474
src/chat.rs
474
src/chat.rs
@ -1,474 +0,0 @@
|
||||
//! A chat server that broadcasts a message to all connections.
|
||||
//!
|
||||
//! This example is explicitly more verbose than it has to be. This is to
|
||||
//! illustrate more concepts.
|
||||
//!
|
||||
//! A chat server for telnet clients. After a telnet client connects, the first
|
||||
//! line should contain the client's name. After that, all lines sent by a
|
||||
//! client are broadcasted to all other connected clients.
|
||||
//!
|
||||
//! Because the client is telnet, lines are delimited by "\r\n".
|
||||
//!
|
||||
//! You can test this out by running:
|
||||
//!
|
||||
//! cargo run --example chat
|
||||
//!
|
||||
//! And then in another terminal run:
|
||||
//!
|
||||
//! telnet localhost 6142
|
||||
//!
|
||||
//! You can run the `telnet` command in any number of additional windows.
|
||||
//!
|
||||
//! You can run the second command in multiple windows and then chat between the
|
||||
//! two, seeing the messages from the other client as they're received. For all
|
||||
//! connected clients they'll all join the same room and see everyone else's
|
||||
//! messages.
|
||||
|
||||
#![deny(warnings)]
|
||||
|
||||
extern crate tokio;
|
||||
#[macro_use]
|
||||
extern crate futures;
|
||||
extern crate bytes;
|
||||
|
||||
use tokio::io;
|
||||
use tokio::net::{TcpListener, TcpStream};
|
||||
use tokio::prelude::*;
|
||||
use futures::sync::mpsc;
|
||||
use futures::future::{self, Either};
|
||||
use bytes::{BytesMut, Bytes, BufMut};
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::net::SocketAddr;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
/// Shorthand for the transmit half of the message channel.
|
||||
type Tx = mpsc::UnboundedSender<Bytes>;
|
||||
|
||||
/// Shorthand for the receive half of the message channel.
|
||||
type Rx = mpsc::UnboundedReceiver<Bytes>;
|
||||
|
||||
/// Data that is shared between all peers in the chat server.
|
||||
///
|
||||
/// This is the set of `Tx` handles for all connected clients. Whenever a
|
||||
/// message is received from a client, it is broadcasted to all peers by
|
||||
/// iterating over the `peers` entries and sending a copy of the message on each
|
||||
/// `Tx`.
|
||||
struct Shared {
|
||||
peers: HashMap<SocketAddr, Tx>,
|
||||
}
|
||||
|
||||
/// The state for each connected client.
|
||||
struct Peer {
|
||||
/// Name of the peer.
|
||||
///
|
||||
/// When a client connects, the first line sent is treated as the client's
|
||||
/// name (like alice or bob). The name is used to preface all messages that
|
||||
/// arrive from the client so that we can simulate a real chat server:
|
||||
///
|
||||
/// ```text
|
||||
/// alice: Hello everyone.
|
||||
/// bob: Welcome to telnet chat!
|
||||
/// ```
|
||||
name: BytesMut,
|
||||
|
||||
/// The TCP socket wrapped with the `Lines` codec, defined below.
|
||||
///
|
||||
/// This handles sending and receiving data on the socket. When using
|
||||
/// `Lines`, we can work at the line level instead of having to manage the
|
||||
/// raw byte operations.
|
||||
lines: Lines,
|
||||
|
||||
/// Handle to the shared chat state.
|
||||
///
|
||||
/// This is used to broadcast messages read off the socket to all connected
|
||||
/// peers.
|
||||
state: Arc<Mutex<Shared>>,
|
||||
|
||||
/// Receive half of the message channel.
|
||||
///
|
||||
/// This is used to receive messages from peers. When a message is received
|
||||
/// off of this `Rx`, it will be written to the socket.
|
||||
rx: Rx,
|
||||
|
||||
/// Client socket address.
|
||||
///
|
||||
/// The socket address is used as the key in the `peers` HashMap. The
|
||||
/// address is saved so that the `Peer` drop implementation can clean up its
|
||||
/// entry.
|
||||
addr: SocketAddr,
|
||||
}
|
||||
|
||||
/// Line based codec
|
||||
///
|
||||
/// This decorates a socket and presents a line based read / write interface.
|
||||
///
|
||||
/// As a user of `Lines`, we can focus on working at the line level. So, we send
|
||||
/// and receive values that represent entire lines. The `Lines` codec will
|
||||
/// handle the encoding and decoding as well as reading from and writing to the
|
||||
/// socket.
|
||||
#[derive(Debug)]
|
||||
struct Lines {
|
||||
/// The TCP socket.
|
||||
socket: TcpStream,
|
||||
|
||||
/// Buffer used when reading from the socket. Data is not returned from this
|
||||
/// buffer until an entire line has been read.
|
||||
rd: BytesMut,
|
||||
|
||||
/// Buffer used to stage data before writing it to the socket.
|
||||
wr: BytesMut,
|
||||
}
|
||||
|
||||
impl Shared {
|
||||
/// Create a new, empty, instance of `Shared`.
|
||||
fn new() -> Self {
|
||||
Shared {
|
||||
peers: HashMap::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Peer {
|
||||
/// Create a new instance of `Peer`.
|
||||
fn new(name: BytesMut,
|
||||
state: Arc<Mutex<Shared>>,
|
||||
lines: Lines) -> Peer
|
||||
{
|
||||
// Get the client socket address
|
||||
let addr = lines.socket.peer_addr().unwrap();
|
||||
|
||||
// Create a channel for this peer
|
||||
let (tx, rx) = mpsc::unbounded();
|
||||
|
||||
// Add an entry for this `Peer` in the shared state map.
|
||||
state.lock().unwrap()
|
||||
.peers.insert(addr, tx);
|
||||
|
||||
Peer {
|
||||
name,
|
||||
lines,
|
||||
state,
|
||||
rx,
|
||||
addr,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This is where a connected client is managed.
|
||||
///
|
||||
/// A `Peer` is also a future representing completely processing the client.
|
||||
///
|
||||
/// When a `Peer` is created, the first line (representing the client's name)
|
||||
/// has already been read. When the socket closes, the `Peer` future completes.
|
||||
///
|
||||
/// While processing, the peer future implementation will:
|
||||
///
|
||||
/// 1) Receive messages on its message channel and write them to the socket.
|
||||
/// 2) Receive messages from the socket and broadcast them to all peers.
|
||||
///
|
||||
impl Future for Peer {
|
||||
type Item = ();
|
||||
type Error = io::Error;
|
||||
|
||||
fn poll(&mut self) -> Poll<(), io::Error> {
|
||||
// Tokio (and futures) use cooperative scheduling without any
|
||||
// preemption. If a task never yields execution back to the executor,
|
||||
// then other tasks may be starved.
|
||||
//
|
||||
// To deal with this, robust applications should not have any unbounded
|
||||
// loops. In this example, we will read at most `LINES_PER_TICK` lines
|
||||
// from the client on each tick.
|
||||
//
|
||||
// If the limit is hit, the current task is notified, informing the
|
||||
// executor to schedule the task again asap.
|
||||
const LINES_PER_TICK: usize = 10;
|
||||
|
||||
// Receive all messages from peers.
|
||||
for i in 0..LINES_PER_TICK {
|
||||
// Polling an `UnboundedReceiver` cannot fail, so `unwrap` here is
|
||||
// safe.
|
||||
match self.rx.poll().unwrap() {
|
||||
Async::Ready(Some(v)) => {
|
||||
// Buffer the line. Once all lines are buffered, they will
|
||||
// be flushed to the socket (right below).
|
||||
self.lines.buffer(&v);
|
||||
|
||||
// If this is the last iteration, the loop will break even
|
||||
// though there could still be lines to read. Because we did
|
||||
// not reach `Async::NotReady`, we have to notify ourselves
|
||||
// in order to tell the executor to schedule the task again.
|
||||
if i+1 == LINES_PER_TICK {
|
||||
task::current().notify();
|
||||
}
|
||||
}
|
||||
_ => break,
|
||||
}
|
||||
}
|
||||
|
||||
// Flush the write buffer to the socket
|
||||
let _ = self.lines.poll_flush()?;
|
||||
|
||||
// Read new lines from the socket
|
||||
while let Async::Ready(line) = self.lines.poll()? {
|
||||
println!("Received line ({:?}) : {:?}", self.name, line);
|
||||
|
||||
if let Some(message) = line {
|
||||
// Append the peer's name to the front of the line:
|
||||
let mut line = self.name.clone();
|
||||
line.extend_from_slice(b": ");
|
||||
line.extend_from_slice(&message);
|
||||
line.extend_from_slice(b"\r\n");
|
||||
|
||||
// We're using `Bytes`, which allows zero-copy clones (by
|
||||
// storing the data in an Arc internally).
|
||||
//
|
||||
// However, before cloning, we must freeze the data. This
|
||||
// converts it from mutable -> immutable, allowing zero copy
|
||||
// cloning.
|
||||
let line = line.freeze();
|
||||
|
||||
// Now, send the line to all other peers
|
||||
for (addr, tx) in &self.state.lock().unwrap().peers {
|
||||
// Don't send the message to ourselves
|
||||
if *addr != self.addr {
|
||||
// The send only fails if the rx half has been dropped,
|
||||
// however this is impossible as the `tx` half will be
|
||||
// removed from the map before the `rx` is dropped.
|
||||
tx.unbounded_send(line.clone()).unwrap();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// EOF was reached. The remote client has disconnected. There is
|
||||
// nothing more to do.
|
||||
return Ok(Async::Ready(()));
|
||||
}
|
||||
}
|
||||
|
||||
// As always, it is important to not just return `NotReady` without
|
||||
// ensuring an inner future also returned `NotReady`.
|
||||
//
|
||||
// We know we got a `NotReady` from either `self.rx` or `self.lines`, so
|
||||
// the contract is respected.
|
||||
Ok(Async::NotReady)
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for Peer {
|
||||
fn drop(&mut self) {
|
||||
self.state.lock().unwrap().peers
|
||||
.remove(&self.addr);
|
||||
}
|
||||
}
|
||||
|
||||
impl Lines {
|
||||
/// Create a new `Lines` codec backed by the socket
|
||||
fn new(socket: TcpStream) -> Self {
|
||||
Lines {
|
||||
socket,
|
||||
rd: BytesMut::new(),
|
||||
wr: BytesMut::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Buffer a line.
|
||||
///
|
||||
/// This writes the line to an internal buffer. Calls to `poll_flush` will
|
||||
/// attempt to flush this buffer to the socket.
|
||||
fn buffer(&mut self, line: &[u8]) {
|
||||
// Ensure the buffer has capacity. Ideally this would not be unbounded,
|
||||
// but to keep the example simple, we will not limit this.
|
||||
self.wr.reserve(line.len());
|
||||
|
||||
// Push the line onto the end of the write buffer.
|
||||
//
|
||||
// The `put` function is from the `BufMut` trait.
|
||||
self.wr.put(line);
|
||||
}
|
||||
|
||||
/// Flush the write buffer to the socket
|
||||
fn poll_flush(&mut self) -> Poll<(), io::Error> {
|
||||
// As long as there is buffered data to write, try to write it.
|
||||
while !self.wr.is_empty() {
|
||||
// Try to write some bytes to the socket
|
||||
let n = try_ready!(self.socket.poll_write(&self.wr));
|
||||
|
||||
// As long as the wr is not empty, a successful write should
|
||||
// never write 0 bytes.
|
||||
assert!(n > 0);
|
||||
|
||||
// This discards the first `n` bytes of the buffer.
|
||||
let _ = self.wr.split_to(n);
|
||||
}
|
||||
|
||||
Ok(Async::Ready(()))
|
||||
}
|
||||
|
||||
/// Read data from the socket.
|
||||
///
|
||||
/// This only returns `Ready` when the socket has closed.
|
||||
fn fill_read_buf(&mut self) -> Poll<(), io::Error> {
|
||||
loop {
|
||||
// Ensure the read buffer has capacity.
|
||||
//
|
||||
// This might result in an internal allocation.
|
||||
self.rd.reserve(1024);
|
||||
|
||||
// Read data into the buffer.
|
||||
let n = try_ready!(self.socket.read_buf(&mut self.rd));
|
||||
|
||||
if n == 0 {
|
||||
return Ok(Async::Ready(()));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Stream for Lines {
|
||||
type Item = BytesMut;
|
||||
type Error = io::Error;
|
||||
|
||||
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
|
||||
// First, read any new data that might have been received off the socket
|
||||
let sock_closed = self.fill_read_buf()?.is_ready();
|
||||
|
||||
// Now, try finding lines
|
||||
let pos = self.rd.windows(2).enumerate()
|
||||
.find(|&(_, bytes)| bytes == b"\r\n")
|
||||
.map(|(i, _)| i);
|
||||
|
||||
if let Some(pos) = pos {
|
||||
// Remove the line from the read buffer and set it to `line`.
|
||||
let mut line = self.rd.split_to(pos + 2);
|
||||
|
||||
// Drop the trailing \r\n
|
||||
line.split_off(pos);
|
||||
|
||||
// Return the line
|
||||
return Ok(Async::Ready(Some(line)));
|
||||
}
|
||||
|
||||
if sock_closed {
|
||||
Ok(Async::Ready(None))
|
||||
} else {
|
||||
Ok(Async::NotReady)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Spawn a task to manage the socket.
|
||||
///
|
||||
/// This will read the first line from the socket to identify the client, then
|
||||
/// add the client to the set of connected peers in the chat service.
|
||||
fn process(socket: TcpStream, state: Arc<Mutex<Shared>>) {
|
||||
// Wrap the socket with the `Lines` codec that we wrote above.
|
||||
//
|
||||
// By doing this, we can operate at the line level instead of doing raw byte
|
||||
// manipulation.
|
||||
let lines = Lines::new(socket);
|
||||
|
||||
// The first line is treated as the client's name. The client is not added
|
||||
// to the set of connected peers until this line is received.
|
||||
//
|
||||
// We use the `into_future` combinator to extract the first item from the
|
||||
// lines stream. `into_future` takes a `Stream` and converts it to a future
|
||||
// of `(first, rest)` where `rest` is the original stream instance.
|
||||
let connection = lines.into_future()
|
||||
// `into_future` doesn't have the right error type, so map the error to
|
||||
// make it work.
|
||||
.map_err(|(e, _)| e)
|
||||
// Process the first received line as the client's name.
|
||||
.and_then(|(name, lines)| {
|
||||
// If `name` is `None`, then the client disconnected without
|
||||
// actually sending a line of data.
|
||||
//
|
||||
// Since the connection is closed, there is no further work that we
|
||||
// need to do. So, we just terminate processing by returning
|
||||
// `future::ok()`.
|
||||
//
|
||||
// The problem is that only a single future type can be returned
|
||||
// from a combinator closure, but we want to return both
|
||||
// `future::ok()` and `Peer` (below).
|
||||
//
|
||||
// This is a common problem, so the `futures` crate solves this by
|
||||
// providing the `Either` helper enum that allows creating a single
|
||||
// return type that covers two concrete future types.
|
||||
let name = match name {
|
||||
Some(name) => name,
|
||||
None => {
|
||||
// The remote client closed the connection without sending
|
||||
// any data.
|
||||
return Either::A(future::ok(()));
|
||||
}
|
||||
};
|
||||
|
||||
println!("`{:?}` is joining the chat", name);
|
||||
|
||||
// Create the peer.
|
||||
//
|
||||
// This is also a future that processes the connection, only
|
||||
// completing when the socket closes.
|
||||
let peer = Peer::new(
|
||||
name,
|
||||
state,
|
||||
lines);
|
||||
|
||||
// Wrap `peer` with `Either::B` to make the return type fit.
|
||||
Either::B(peer)
|
||||
})
|
||||
// Task futures have an error of type `()`, this ensures we handle the
|
||||
// error. We do this by printing the error to STDOUT.
|
||||
.map_err(|e| {
|
||||
println!("connection error = {:?}", e);
|
||||
});
|
||||
|
||||
// Spawn the task. Internally, this submits the task to a thread pool.
|
||||
tokio::spawn(connection);
|
||||
}
|
||||
|
||||
pub fn main() {
|
||||
// Create the shared state. This is how all the peers communicate.
|
||||
//
|
||||
// The server task will hold a handle to this. For every new client, the
|
||||
// `state` handle is cloned and passed into the task that processes the
|
||||
// client connection.
|
||||
let state = Arc::new(Mutex::new(Shared::new()));
|
||||
|
||||
let addr = "127.0.0.1:6142".parse().unwrap();
|
||||
|
||||
// Bind a TCP listener to the socket address.
|
||||
//
|
||||
// Note that this is the Tokio TcpListener, which is fully async.
|
||||
let listener = TcpListener::bind(&addr).unwrap();
|
||||
|
||||
// The server task asynchronously iterates over and processes each
|
||||
// incoming connection.
|
||||
let server = listener.incoming().for_each(move |socket| {
|
||||
// Spawn a task to process the connection
|
||||
process(socket, state.clone());
|
||||
Ok(())
|
||||
})
|
||||
.map_err(|err| {
|
||||
// All tasks must have an `Error` type of `()`. This forces error
|
||||
// handling and helps avoid silencing failures.
|
||||
//
|
||||
// In our example, we are only going to log the error to STDOUT.
|
||||
println!("accept error = {:?}", err);
|
||||
});
|
||||
|
||||
println!("server running on localhost:6142");
|
||||
|
||||
// Start the Tokio runtime.
|
||||
//
|
||||
// The Tokio is a pre-configured "out of the box" runtime for building
|
||||
// asynchronous applications. It includes both a reactor and a task
|
||||
// scheduler. This means applications are multithreaded by default.
|
||||
//
|
||||
// This function blocks until the runtime reaches an idle state. Idle is
|
||||
// defined as all spawned tasks have completed and all I/O resources (TCP
|
||||
// sockets in our case) have been dropped.
|
||||
//
|
||||
// In our example, we have not defined a shutdown strategy, so this will
|
||||
// block until `ctrl-c` is pressed at the terminal.
|
||||
tokio::run(server);
|
||||
}
|
||||
76
src/main.rs
76
src/main.rs
@ -1,26 +1,72 @@
|
||||
// needed by tarpc until it becomes stable
|
||||
#![feature(plugin, use_extern_macros, proc_macro_path_invoc)]
|
||||
#![plugin(tarpc_plugins)]
|
||||
|
||||
extern crate tokio_core;
|
||||
#[macro_use] extern crate futures;
|
||||
#[macro_use] extern crate tarpc;
|
||||
extern crate rand;
|
||||
extern crate uuid;
|
||||
extern crate ws;
|
||||
extern crate env_logger;
|
||||
|
||||
extern crate serde;
|
||||
extern crate serde_cbor;
|
||||
#[macro_use] extern crate serde_derive;
|
||||
|
||||
extern crate rand;
|
||||
extern crate uuid;
|
||||
#[macro_use]
|
||||
extern crate serde_derive;
|
||||
|
||||
mod cryp;
|
||||
mod combat;
|
||||
mod battle;
|
||||
mod skill;
|
||||
mod net;
|
||||
mod combat;
|
||||
mod skill;
|
||||
|
||||
use net::run_server;
|
||||
use std::rc::Rc;
|
||||
use std::cell::Cell;
|
||||
use ws::{listen, Handler, Sender, Result, Message, Handshake, CloseCode, Error};
|
||||
|
||||
use net::{generate};
|
||||
|
||||
struct Server {
|
||||
out: Sender,
|
||||
count: Rc<Cell<u32>>,
|
||||
}
|
||||
|
||||
impl Handler for Server {
|
||||
|
||||
fn on_open(&mut self, _: Handshake) -> Result<()> {
|
||||
// We have a new connection, so we increment the connection counter
|
||||
println!("somebody joined");
|
||||
Ok(self.count.set(self.count.get() + 1))
|
||||
}
|
||||
|
||||
fn on_message(&mut self, msg: Message) -> Result<()> {
|
||||
// Tell the user the current count
|
||||
println!("The number of live connections is {}", self.count.get());
|
||||
|
||||
let reply = Message::binary(generate());
|
||||
|
||||
// Echo the message back
|
||||
self.out.send(reply)
|
||||
}
|
||||
|
||||
fn on_close(&mut self, code: CloseCode, reason: &str) {
|
||||
match code {
|
||||
CloseCode::Normal => println!("The client is done with the connection."),
|
||||
CloseCode::Away => println!("The client is leaving the site."),
|
||||
CloseCode::Abnormal => println!(
|
||||
"Closing handshake failed! Unable to obtain closing status from client."),
|
||||
_ => println!("The client encountered an error: {}", reason),
|
||||
}
|
||||
|
||||
// The connection is going down, so we need to decrement the count
|
||||
self.count.set(self.count.get() - 1)
|
||||
}
|
||||
|
||||
fn on_error(&mut self, err: Error) {
|
||||
println!("The server encountered an error: {:?}", err);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
fn main() {
|
||||
run_server()
|
||||
// Cell gives us interior mutability so we can increment
|
||||
// or decrement the count between handlers.
|
||||
// Rc is a reference-counted box for sharing the count between handlers
|
||||
// since each handler needs to own its contents.
|
||||
let count = Rc::new(Cell::new(0));
|
||||
listen("127.0.0.1:40000", |out| { Server { out: out, count: count.clone() } }).unwrap();
|
||||
}
|
||||
59
src/net.rs
59
src/net.rs
@ -1,51 +1,16 @@
|
||||
use futures::Future;
|
||||
use tarpc::future::{client, server};
|
||||
use tarpc::future::client::ClientExt;
|
||||
use tarpc::util::{FirstSocketAddr, Never};
|
||||
use tokio_core::reactor;
|
||||
use cryp::{Cryp};
|
||||
use skill::{Skill};
|
||||
use serde_cbor::{to_vec};
|
||||
|
||||
service! {
|
||||
rpc hello(name: String) -> String;
|
||||
}
|
||||
pub fn generate() -> Vec<u8> {
|
||||
let level_two = Cryp::new()
|
||||
.named("hatchling".to_string())
|
||||
.level(2)
|
||||
.learn(Skill::Stoney)
|
||||
.create();
|
||||
|
||||
#[derive(Clone)]
|
||||
struct HelloServer;
|
||||
|
||||
impl FutureService for HelloServer {
|
||||
type HelloFut = Result<String, Never>;
|
||||
|
||||
fn hello(&self, name: String) -> Self::HelloFut {
|
||||
Ok(format!("Hello, {}!", name))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn run_server() {
|
||||
let mut reactor = reactor::Core::new().unwrap();
|
||||
let (mut handle, server) = HelloServer
|
||||
.listen(
|
||||
"localhost:10000".first_socket_addr(),
|
||||
&reactor.handle(),
|
||||
server::Options::default(),
|
||||
)
|
||||
.unwrap();
|
||||
reactor.handle().spawn(server);
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn connect() {
|
||||
let mut reactor = reactor::Core::new().unwrap();
|
||||
let options = client::Options::default().handle(reactor.handle());
|
||||
reactor
|
||||
.run(
|
||||
FutureClient::connect("localhost:10000".first_socket_addr(), options)
|
||||
.map_err(|e| panic!("{:?}", e))
|
||||
.and_then(|client| client.hello("Mom".to_string()))
|
||||
.map(|resp| println!("{}", resp)),
|
||||
)
|
||||
.unwrap();
|
||||
match to_vec(&level_two) {
|
||||
Ok(v) => v,
|
||||
Err(e) => panic!("couldn't serialize cryp"),
|
||||
}
|
||||
}
|
||||
@ -1,3 +0,0 @@
|
||||
|
||||
pub fn start_server() {
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user